4.6 Article

Non-equilibrium phase separation with reactions: a canonical model and its behaviour

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1742-5468/ab7e2d

关键词

active matter; phase diagrams; pattern formation; population dynamics

资金

  1. Cambridge Trust
  2. Jardine Foundation
  3. European Research Council [740269]
  4. Royal Society
  5. European Research Council (ERC) [740269] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Materials undergoing both phase separation and chemical reactions (defined here as all processes that change particle type or number) form an important class of non-equilibrium systems. Examples range from suspensions of self-propelled bacteria with birth-death dynamics, to bio-molecular condensates, or 'membraneless organelles', within cells. In contrast to their passive counterparts, such systems have conserved and non-conserved dynamics that do not, in general, derive from a shared free energy. This mismatch breaks time-reversal symmetry and leads to new types of dynamical competition that are absent in or near equilibrium. We construct a canonical scalar field theory to describe such systems, with conserved and non-conserved dynamics obeying model B and model A, respectively (in the Hohenberg-Halperin classification), chosen such that the two free energies involved are incompatible. The resulting minimal model is shown to capture the various phenomenologies reported previously for more complicated models with the same physical ingredients, including microphase separation, limit cycles and droplet splitting. We find a low-dimensional subspace of parameters for which time-reversal symmetry is accidentally recovered, and show that here the dynamics of the order parameter field (but not its conserved current) is exactly the same as an equilibrium system in which microphase separation is caused by long-range attractive interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据