4.8 Article

Mn Ion Dissolution Mechanism for Lithium-Ion Battery with LiMn2O4 Cathode: In Situ Ultraviolet-Visible Spectroscopy and Ab Initio Molecular Dynamics Simulations

期刊

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
卷 11, 期 8, 页码 3051-3057

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.0c00936

关键词

-

资金

  1. National Key R&D Program of China [2017YFB0102004]
  2. NSFC [51822211, U1932220]
  3. U.S. Department of Energy Office of Science User Facility [DE-AC02-05CH11231]

向作者/读者索取更多资源

The dissolution of transition-metal (TM) cations into a liquid electrolyte from cathode material, such as Mn ion dissolution from LiMn2O4 (LMO), is detrimental to the cycling performance of Li-ion batteries (LIBs). Though much attention has been paid to this issue, the behavior of Mn dissolution has not been clearly revealed. In this work, by using a refined in situ ultraviolet-visible (UV-vis) spectroscopy technique, we monitored the concentration changes of dissolved Mn ions in liquid electrolyte from LMO at different state of charge (SOC), confirming the maximum dissolution concentration and rate at 4.3 V charged state and Mn2+ as the main species in the electrolyte. Through ab initio molecular dynamics (AIMD) simulations, we revealed that the Mn dissolution process is highly related to surface structure evolution, solvent decomposition, and lithium salt. These results will contribute to understanding TM dissolution mechanisms at working conditions as well as the design of stable cathodes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据