4.6 Article

Contributions of Abundant Hydroxyl Groups to Extraordinarily High Photocatalytic Activity of Amorphous Titania for CO2 Reduction

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 124, 期 20, 页码 10981-10992

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.0c01548

关键词

-

资金

  1. Ministry of Science and Technology (MOST), Taiwan [MOST 106-2628-E-009-005-MY3]

向作者/读者索取更多资源

Despite severe charge recombination occurring within the bulk lattice, sol-gel-derived amorphous TiO2 particles with abundant OH groups (81.6 mg/g) and high surface area (274 m(2)/g) were for the first time demonstrated to exhibit respectively 8-14 and 9 times higher photocatalytic activity for CO2 reduction than their thermally derived anatase crystals and the commercial P25 powder. Moreover, the high density of the OH groups (12.45/nm(2)) enabled the amorphous oxide to exhibit higher specific surface reactivity than the crystals. The OH groups not only converted CO2 molecules into bonded bicarbonate/carbonate species to improve CO2 chemisorption but also trapped holes to form Ti-O-O-Ti species when the OH density was higher than a threshold value of 8.74/nm(2), which synergistically promoted interfacial charge transfer. Bidentate carbonate and center dot CO2- were two active species that were able to underwent CO32- -> Ti-OOCH2 -> Ti-O-CH3 -> CH4 and center dot CO2- -> CO22- -> Ti-COOH -> CO sequences on the hydroxylated surface to produce CH4 and CO products, respectively. High coverage of the chemisorbed carbonate species selected for CO2 reduction rather than H-2 evolution to proceed. Moreover, it led with CH4 as the major product. Oxygen vacancies were the major active sites on the anatase crystals. Their influences on the surface transformations were also characterized to comprehensively understand the surface-controlled activity and selectivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据