4.4 Article

Astragaloside IV ameliorates radiation-induced senescence via antioxidative mechanism

期刊

JOURNAL OF PHARMACY AND PHARMACOLOGY
卷 72, 期 8, 页码 1110-1118

出版社

OXFORD UNIV PRESS
DOI: 10.1111/jphp.13284

关键词

cell signal pathway; nerve cells; radiation; senescence

向作者/读者索取更多资源

Objectives Ageing is a universal and gradual process of organ deterioration. Radiation induces oxidative stress in cells, which leads to genetic damage and affects cell growth, differentiation and senescence. Astragaloside (AS)-IV has antioxidative, anti-apoptotic and anti-inflammatory properties. Methods To study the protective mechanism of AS-IV on radiation-induced brain cell senescence, we constructed a radiation-induced brain cell ageing model, using biochemical indicators, senescence-associated galactosidase (SA-beta-gal) senescence staining, flow cytometry and Western blotting to analyse the AS-IV resistance mechanism to radiation-induced brain cell senescence. Key findings Radiation reduced superoxide dismutase (SOD) activity and expressions of cyclin-dependent kinase (CDK2), CDK4, cyclin E and transcription factor E2F1 proteins, and increased expressions of p21, p16, cyclin D and retinoblastoma (RB) proteins, malondialdehyde (MDA) activity, SA-beta-gal-positive cells and cells stagnating in G1 phase. After treatment with AS-IV, the level of oxidative stress in cells significantly decreased and expression of proteins related to the cell cycle and ageing significantly changed. In addition, SA-beta-gal-positive cells and cells arrested in G1 phase were significantly reduced. Conclusions These data suggest that AS-IV can antagonize radiation-induced brain cells senescence; and its mechanism may be related to p53-p21 and p16-RB signalling pathways of ageing regulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据