4.5 Article

Crude oil/brine/rock interface in low salinity waterflooding: Experiments, triple-layer surface complexation model, and DLVO theory

期刊

出版社

ELSEVIER
DOI: 10.1016/j.petrol.2020.106913

关键词

Zeta potential; Surface complexation model; Wettability alteration; Surface charge; EOR

向作者/读者索取更多资源

The determination of the electrokinetic properties of crude oil/brine and rock/brine interfaces is necessary to understand and evaluate the low salinity waterflooding (LSWF) effect on wettability alteration and enhanced oil recovery (EOR). The interface properties and characteristics of oil and rock minerals significantly affect LSWF and must be elucidated in detail. Herein, the interaction of crude oil, brine, and rock was studied to elucidate the LSWF effect in carbonate and sandstone reservoirs. A triple-layer surface complexation model was proposed to describe the calcite/brine and kaolinite/brine interfaces and was verified with zeta potential experiments at various pH and calcium, magnesium, and sulphate concentrations. Furthermore, the surface complexation model prediction of zeta potential agreed well with the measured data for the suspension in seawater, formation water, and associated dilutions. The predicted surface potential of crude oil, calcite, and kaolinite was used in Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to estimate the total disjoining pressure as attractive/repulsive forces. The interaction between crude oil and calcite/kaolinite on seawater dilution and in the presence of sulphate in the diluted solution for calcite was evaluated via disjoining pressure. Moreover, the importance of electrokinetic properties on attractive/repulsive forces and the mechanisms for wettability alteration in crude oil-brine-kaolinite due to LSWF as well as in oil-brine-calcite because of sulphate addition are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据