4.5 Article

Tuning cytokines enriches dendritic cells and regulatory T cells in the periodontium

期刊

JOURNAL OF PERIODONTOLOGY
卷 91, 期 11, 页码 1475-1485

出版社

WILEY
DOI: 10.1002/JPER.19-0411

关键词

adult periodontitis; biomaterials; dendritic cell; immunotherapy; regulatory T cells

资金

  1. National Institute of Health [R01DE019917, T32DK063922, F30DK088518]

向作者/读者索取更多资源

Background Periodontal disease results from the pathogenic interactions between the tissue, immune system, and microbiota; however, standard therapy fails to address the cellular mechanism underlying the chronic inflammation. Dendritic cells (DC) are key regulators of T cell fate, and biomaterials that recruit and program DC locally can direct T cell effector responses. We hypothesized that a biomaterial that recruited and programmed DC toward a tolerogenic phenotype could enrich regulatory T cells within periodontal tissue, with the eventual goal of attenuating T cell mediated pathology. Methods The interaction of previously identified factors that could induce tolerance, granulocyte-macrophage colony stimulating factor (GM-CSF) and thymic stromal lymphopoietin (TSLP), with the periodontitis network was confirmed in silico. The effect of the cytokines on DC migration was explored in vitro using time-lapse imaging. Finally, regulatory T cell enrichment in the dermis and periodontal tissue in response to alginate hydrogels delivering TSLP and GM-CSF was examinedin vivo in mice using immunohistochemistry and live-animal imaging. Results The GM-CSF and TSLP interactome connects to the periodontitis network. GM-CSF enhances DC migration in vitro. An intradermal injection of an alginate hydrogel releasing GM-CSF enhanced DC numbers and the addition of TSLP enriched FOXP3+ regulatory T cells locally. Injection of a hydrogel with GM-CSF and TSLP into the periodontal tissue in mice increased DC and FOXP3+ cell numbers in the tissue, FOXP3+ cells in the lymph node, and IL-10 in the tissue. Conclusion Local biomaterial-mediated delivery of GM-CSF and TSLP can enrich DC and FOXP3+ cells and holds promise for treating the pathologic inflammation of periodontal disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据