4.7 Article

In silico investigations of alginate biopolymer on the Fe (110), Cu (111), Al (111) and Sn (001) surfaces in acidic media: Quantum chemical and molecular mechanic calculations

期刊

JOURNAL OF MOLECULAR LIQUIDS
卷 312, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.molliq.2020.113479

关键词

Alginate; DFT; Monte Carlo; Molecular dynamics; Corrosion inhibitor; Metal

向作者/读者索取更多资源

Herein, the inhibition behavior of alginate biopolymer with different chain length (fragments) on corrosion of Fe (110), Cu (111), Al (111) and Sn (001) surfaces in acidic medium was investigated using quantum chemical calculations and molecular mechanic methods. Based on HSAB's theory, local and global reactivity indicators of different alginate fragments were calculated using DFF/B3LYP/3-21G method. Molecular mechanic simulations were employed to describe quantitatively and qualitatively the adsorption behavior of the bio-inhibitor on the metal surfaces. As a result, the chain length of alginate and metal nature were considerably affected magnitude and trend of alginate/metal interactions. Gradually as the chain length of the alginate molecule was increased, the binding energy increased. On the other hand, it found that the binding of alginate onto metal surfaces followed this order: Sn (001) < Al (111) < Cu (111) < Fe (110). Additionally, the minimum distance based on the radial distribution function (RDF) analysis between alginate and some aggressive agents for considered surfaces was calculated and discussed. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据