4.7 Article

Concentration polarization over reverse osmosis membranes with engineered surface features

期刊

JOURNAL OF MEMBRANE SCIENCE
卷 617, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.memsci.2020.118199

关键词

CFD; Desalination; Thin-film composite membranes; Patterned membranes

资金

  1. Designing Materials to Revolutionize and Engineer our Future (DMREF) program of the U.S. National Science Foundation [1534304]

向作者/读者索取更多资源

Creating membranes with engineered surface features has been proven to be effective in reducing membrane fouling and increasing flux. These surface patterns enhance mixing and improve mass transfer of solutes away from the membrane, leading to improved performance in reverse osmosis membranes operated under laminar flow conditions. The patterns influence velocity, shear stress, and concentration profiles, resulting in varying levels of concentration polarization and impacting mass transfer efficiency. Despite higher concentration polarization, the additional surface area provided by the patterns can lead to an increase in nominal permeate flux, highlighting the potential benefits of using patterned membranes.
Creating membranes with engineered surface features has been shown to reduce membrane fouling and increase flux. Surface feature patterns can be created by several means, such as thermal embossing with hard stamps, template-based micromolding, and printing. It has been proposed that the patterns create enhanced mixing and irregular fluid flow that increases mass transfer of solutes away from the membrane. The main objective of this paper is to explore whether enhanced mixing and improved mass transfer actually do take place for reverse osmosis (RO) membranes operated in laminar flow conditions typical of full-scale applications. We analyzed velocity, concentration, shear stress, and concentration polarization (CP) profiles for flat, nanopatterned, and micropatterned membranes using computational fluid dynamics. Our methods coupled the calculation of fluid flow with solute mass transport, rather than imposing a flux, as has often been done in other studies. A correlation between Sherwood number and mass-transfer coefficient for flat membranes was utilized to help characterize the hydrodynamic conditions. These results were in good agreement with the numerical simulations, providing support for the modeling results. Models with flat, several line and groove patterns, rectangular and circular pillars, and pyramids were explored. Feature sizes ranged from zero (flat) to 512 mu m. The ratio of feature length, between-feature distance, and feature height was 1:1:0.5. Results indicate that patterns greatly affected velocity, shear stress, and concentration profiles. Lower shear stress was observed in the valleys between the pattern features, corresponding to the higher concentration region. Some vortices were generated in the valleys, but these were low-velocity flow features. For all of the patterned membranes CP was between 1% and 64% higher than the corresponding flat membrane. It was found that pattern roughness correlated with boundary layer thickness and thus the patterns with higher roughness caused lower mass transfer of solute away from the surface. Rather than enhancing mixing to redistribute solute, the patterns accumulated solute in valleys and behind surface features. Despite the elevated CP, the nominal permeate flux increased by as much as 40% in patterned membranes due to higher surface area compared to flat membranes. The advantageous results seen in other studies where patterns have helped increase flux may be caused by the additional surface area that patterns provide.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据