4.5 Article

Estimating Effect of Additional Sample on Uncertainty Reduction in Reliability Analysis Using Gaussian Process

期刊

JOURNAL OF MECHANICAL DESIGN
卷 142, 期 11, 页码 -

出版社

ASME
DOI: 10.1115/1.4047002

关键词

prediction uncertainty; uncertainty in reliability; expected uncertainty change; adaptive sampling; gaussian process; uncertainty analysis

向作者/读者索取更多资源

An approach is proposed to quantify the uncertainty in probability of failure using a Gaussian process (GP) and to estimate uncertainty change before actually adding samples to GP. The approach estimates the coefficient of variation (CV) of failure probability due to prediction variance of GP. The CV is estimated using single-loop Monte Carlo simulation (MCS), which integrates the probabilistic classification function while replacing expensive multi-loop MCS. The methodology ensures a conservative estimate of CV, in order to compensate for sampling uncertainty in MCS. Uncertainty change is estimated by adding a virtual sample from the current GP and calculating the change in CV, which is called expected uncertainty change (EUC). The proposed method can help adaptive sampling schemes to determine when to stop before adding a sample. In numerical examples, the proposed method is used in conjunction with the efficient local reliability analysis to calculate the reliability of analytical function as well as the battery drop test simulation. It is shown that the EUC converges to the true uncertainty change as the model becomes accurate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据