4.6 Article

Highly dispersed polypyrrole nanotubes for improving the conductivity of electrically conductive adhesives

期刊

出版社

SPRINGER
DOI: 10.1007/s10854-020-03513-5

关键词

-

资金

  1. National Natural Science Foundation of China [21574061, 21774054]
  2. Shenzhen fundamental research programs [JCYJ20170412152922553]
  3. start-up fund of SUSTech [Y01256114]

向作者/读者索取更多资源

It is imperative to fabricate electrically conductive adhesives (ECAs) with excellent electrical performance and mechanical properties. In this article, a kind of polypyrrole nanotubes (PPy nanotubes) having a high aspect ratio and excellent dispersibility in various kinds of organic solvents were prepared and added to conventional Ag-containing adhesives. Stable suspension characteristics of PPy nanotubes in common solvents provided homogeneous dispersion of the PPy nanotubes in the composites. A small amount of PPy nanotubes can remarkably change the structures of the conductive networks of conventional ECAs and significantly improve the ECAs' conductivity. By only adding 3 wt% PPy nanotubes, the resistivity (5.8 x 10(-5) omega & x2027; cm) of the ECAs containing 55 wt% silver decreased to 1/1000 of the comparative ECAs without PPy nanotubes. This resistivity is almost five to one-tenth of the ECAs materials reported by now. Furthermore, the resulted ECAs showed excellent mechanical properties. The electrical resistivity of the new PPy nanotube-containing ECAs remained stable after they were rolled at a 6 mm bending radius for over 5000 cycles or pressed under 1200 kPa. An elastic printed circuit was fabricated using the above-described ECA-containing PPy nanotube, which demonstrates its potential application in the field of flexible electronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据