4.7 Article

On the microstructural evolution pattern toward nano-scale of an AISI 304 stainless steel during high strain rate surface deformation

期刊

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
卷 44, 期 -, 页码 148-159

出版社

JOURNAL MATER SCI TECHNOL
DOI: 10.1016/j.jmst.2020.01.027

关键词

Microstructural evolution; Plastic deformation; AISI 304 stainless steel; Pipe inner-surface grinding; Shear band

资金

  1. Hundred Outstanding Creative Talents Projects in Hebei University, China
  2. Project Program of Heavy Machinery Collaborative Innovation Center, China
  3. National Natural Foundation of Hebei Province, China [E2018203312]

向作者/读者索取更多资源

In the present investigation, an austenitic AISI 304 stainless steel was subjected to high strain rate surface deformation by Pipe Inner-Surface Grinding (PISG) technique. The depth-dependent deformation parameters (strain, strain rate and strain gradient) were evaluated and the microstructures were systematically characterized. Microstructural evolution from millimeter- to nano-scale was explored, with special attention paid to the localized deformation. Microstructural evolution begins with the formation of planar dislocation arrays and the twin-matrix lamellae, which is followed by the localized deformation characterized by the initiation and the development of shear bands. A twinning-dominated process that was supplemented with dislocation slip-dominated one governed the microstructural evolution inside shear bands. The twin-matrix lamellae transform into extended/lamellar structure and finally the nanosized grains. Austenitic grains were substantially refined and martensitic transformation was effectively suppressed, of which the underlying mechanisms were analyzed. (C) 2020 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据