4.2 Article

Theoretical Approach for Shear-Stress Estimation at 2D Equilibrium Scour Holes in Granular Material due to Subvertical Plunging Jets

期刊

JOURNAL OF HYDRAULIC ENGINEERING
卷 146, 期 4, 页码 -

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)HY.1943-7900.0001703

关键词

Granular bed; Plunging jets; Scour hole; Shear stress

向作者/读者索取更多资源

The estimation of flow-induced shear stresses acting on the surface of scour holes still represents a challenge for scientists and engineers. From the practical point of view, excessive shear stresses can lead to significant scour depths, resulting eventually in the failure of the structure. From the scientific point of view, detailed knowledge of the shear stresses can yield novel insights for further understanding of scour in particular and of two-phase flows in general. Numerous studies have focused on the interaction between the water flow and a granular bed in order to furnish usable expressions for design and to provide knowledge of the erosive mechanisms. Most of those approaches are empirical, and are characterized by rather significant limitations due to tested conditions. Conversely, only a few studies have derived general theoretical equations for the prediction of the shear stresses based on the phenomenological theory of turbulence. To the best of the authors' knowledge, no works have taken into consideration the effect of the amount of suspended sediment on the value of the shear stress at the dynamic equilibrium configuration. This paper proposes a model based on the conservation of the angular momentum in the turbulent pothole to address those stresses. Novel experimental tests allowed for the validation of the derived equation, which is consistent with accepted theoretical and semitheoretical results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据