4.7 Article

Laser induced porous electrospun fibers for enhanced filtration of xylene gas

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 399, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.122976

关键词

VOC gases; Adsorption; Laser irradiation; Electrospinning; Porous structure; Polycarbonate

资金

  1. National Natural Science Foundation of China [21704008]
  2. Natural Science Foundation of the Jiangsu Higher Education Institutions of China [19KJB430008]
  3. Applied Basic Research Project of Changzhou [CJ20180052]
  4. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
  5. Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP)

向作者/读者索取更多资源

With the development of industry, the harm caused by volatile organic compound (VOC) gases to the human body has received much attention. This study reveals as the first attempt to apply laser irradiation technique to the preparation of porous electrospun fibers with excellent low-concentration VOC gases adsorption properties. The laser-sensitive polycarbonate (PC) fibers prepared from electrospinning was treated in air by scanning with a neodymium-doped yttrium aluminum garnet (Nd: YAG) pulsed laser beam to achieve porous structure. During the laser irradiation process, a series of changes such as melting, thermal degradation, and carbonization of the polymer fibers can change the surface structure. The morphology of the porous structure is related to the degree of laser-induced carbonization, and the laser current is an important parameter for determining the degree of laser-induced carbonization of a particular polymer. The results indicate that porous carbon structures can be created on the surface of the fiber membrane by controlling the degree of laser-induced carbonization, and a highly xylene gas adsorption efficiency is exhibited. This study may provide useful insights for developing electrospun porous fibers with VOC adsorption by simple, effective and environmentally friendly laser postprocessing process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据