4.7 Article

Efficient activation of intercalated persulfate via a composite of reduced graphene oxide and layered double hydroxide

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 389, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.122051

关键词

Peroxydisulfate; Graphene; Layered double hydroxide; Sulfate radical

资金

  1. National Science Foundation Project of China [51678351]
  2. Major Science and Technology Program for Water Pollution Control and Treatment [2017ZX07207003-02, 2017ZX07207005-03]

向作者/读者索取更多资源

Efficient activation of peroxydisulfate (PDS, S2O82-) was achieved in this study by a hybrid of reduced graphene oxide (rGO) and layered double hydroxide (LDH). The peroxydisulfate was intercalated into the interlayers of LDH that was combined with rGO. This sample contributed to 92.4 % of phenol (PhOH) removal at 25 degrees C with a PDS loading amount of 0.4 mmol/g, which is better than its LDH-PDS counterpart. A high activation of PDS in rGO/LDH-PDS was also observed during the oxidation of 4-bromophenol (4-BrPhOH), 2,4-dibromophenol (2, 4-BrPhOH), 2,6-dibromophenol (2, 6-BrPhOH) and bisphenol A (BPA). As a redox reaction of PDS in LDH, this result determined that the composite of rGO/LDH caused more PDS to be activated than LDH. As the defective rGO sites activated the PDS on the surface or edges of LDH layers, the breaking of the O-O bond in PDS generated SO4 center dot- radicals from intercalated peroxydisulfate. This result was supported by the radical scavenger experiment, electron paramagnetic resonance measurements, and the increased number of oxygen functional groups in the reacted rGO. Our work thus provided a novel strategy for PDS activation to use in environmental remediation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据