4.7 Article

Characteristics and long-term effects of stabilized nanoscale ferrous sulfide immobilized hexavalent chromium in soil

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 389, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.122089

关键词

CMC-nFeS; Cr(VI)-contaminated soil; Long-term stability; Leaching stability; Mechanisms

资金

  1. Shenzhen Science and Technology Innovation Committee [JCYJ20160330095359100]
  2. National Nature Science Foundation of China [21077002]

向作者/读者索取更多资源

Based on the phenomenon of soil polluted by Hexavalent chromium (Cr(VI)), this study systematically examined the efficiency, stability and feasibility of using sodium carboxymethyl cellulose-stabilized nanoscale ferrous sulfide (CMC-nFeS) to immobilize Cr(VI) in contaminated soil. The experiments described herein showed CMC-nFeS exhibited superior dispersity and a higher antioxidative effect than nFeS alone. Batch tests indicated the nanoparticles could effectively immobilize Cr(VI) in soil. At Cr(VI) concentrations of 56.01-502.21 mg/kg, the reducing capacity of CMC-nFeS was 54.68-198.74 mg Cr(VI)/g FeS. Following treatment with CMC-nFeS, the leachabilities of Cr(VI) and Cr-total determined by the Toxicity Characteristic Leaching Procedure (TCLP), Synthetic Precipitation Leaching Procedure (SPLP) and Physiologically Based Extraction Test (PBET) decreased significantly after 24 h and remained stable for 90 days. Column tests with water and simulated acid rain showed the injection of CMC-nFeS significantly increased the fixed Cr concentration and the procedure was environmentally friendly. Furthermore, analysis of the reaction mechanism demonstrated the best removal obtained in a neutral environment and Cr(VI) was reduced and immobilized in the form of Cr(OH)(3) and Fe0.75Cr0.25OOH confirmed by SEM-EDS and XPS analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据