4.7 Article

A modular functionalized anode for efficient electrochemical oxidation of wastewater: Inseparable synergy between OER anode and its magnetic auxiliary electrodes

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 390, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.122174

关键词

Electrode architecture; Magnetic assembly; IrO2; SnO2; Energy-efficient

资金

  1. Natural Science Basic Research Plan in Shaanxi Province of China [2018JQ2066]
  2. National Natural Science Foundation of China [21706153]

向作者/读者索取更多资源

Oxygen evolution reaction (OER) anodes, (e.g., IrO2) are well-known inefficient catalysts for electrochemical oxidation (EO) of refractory organics in wastewater due to the high energy consumption via OER. However, in this study this kind of anode participated in a very effective EO process via a specific modular anode architecture. Traces of magnetic Fe3O4/Sb-SnO2 particles as auxiliary electrodes (AEs) were attracted on the surface of the two-dimensional (2D) Ti/IrO2-Ta2O5 by a NdFeB magnet, and thereby constituted a new magnetically assembled electrode (MAE). MAE could be renewed by recycling its AEs. The electrochemical properties as well as the EO performances of the MAE could be regulated by adjusting the loading amount of AEs. Results showed that even a small amount of AEs could increase surface roughness and offer massive effective active sites. When removing color of azo dye Acid Red G, the optimal MAE exhibited similar to 1100 % and similar to 500 % higher efficiencies than 2D Ti/IrO2-Ta2O5 and 2D Ti/Sb-SnO2, respectively. The superiority of the MAE was also applicable in degrading phenol. The synergy between Ti/IrO2-Ta2O5 and magnetic Sb-SnO2 particles was therefore discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据