4.5 Article

Impairment of mixed melanin-based pigmentation in parrots

期刊

JOURNAL OF EXPERIMENTAL BIOLOGY
卷 223, 期 12, 页码 -

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jeb.225912

关键词

Pheomelanin; Color redundancy; Plumage coloration; Polyenes; Psittacofulvin; Raman spectroscopy

类别

资金

  1. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior
  2. Ministerio de Economia y Competitividad (MINECO) of the Spanish Government [RYC-2012-10237]
  3. Ornitho-Genetics VZW

向作者/读者索取更多资源

Parrots and allies (Order Psittaciformes) have evolved an exclusive capacity to synthesize polyene pigments called psittacofulvins at feather follicles, which allows them to produce a striking diversity of pigmentation phenotypes. Melanins are polymers constituting the most abundant pigments in animals, and the sulphurated form ( pheomelanin) produces colors that are similar to those produced by psittacofulvins. However, the differential contribution of these pigments to psittaciform phenotypic diversity has not been investigated. Given the color redundancy, and physiological limitations associated with pheomelanin synthesis, we hypothesized that the latter would be avoided by psittaciform birds. Here, we tested this using Raman spectroscopy to identify pigments in feathers exhibiting colors suspected of being produced by pheomelanin (i.e. dull red, yellow, greyish-brown and greenish-brown) in 26 species from the three main lineages of Psittaciformes. We detected the non-sulphurated melanin form (eumelanin) in black, grey and brown plumage patches, and psittacofulvins in red, yellow and green patches, but there was no evidence of pheomelanin. As natural melanins are assumed to be composed of eumelanin and pheomelanin in varying ratios, our results represent the first report of impairment of mixed melanin-based pigmentation in animals. Given that psittaciforms also avoid the uptake of circulating carotenoid pigments, these birds seem to have evolved a capacity to avoid functional redundancy between pigments, likely by regulating follicular gene expression. Our study provides the first vibrational characterization of different psittacofulvin-based colors and thus helps to determine the relative polyene chain length in these pigments, which is related to their antireductant protection activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据