4.7 Article

Sulfur-doped g-C3N4 nanosheets for photocatalysis: Z-scheme water splitting and decreased biofouling

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 567, 期 -, 页码 202-212

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2020.02.017

关键词

Photocatalysis; Water splitting; Z-scheme; S-doped g-C3N4; Ru/SrTiO3:Rh; [Co(bpy)(3)](3+/2+)

资金

  1. Ministry of Science and Technology, Taiwan [MOST 107-2221-E-033-032-MY3, 108-2221E-033-034-MY3]
  2. JSPS [171(05843)]
  3. Asahi Glass Foundation, Japan
  4. Chung Yuan Christian University
  5. KEK-PF , Japan [2018G589]

向作者/读者索取更多资源

In this study, an S-doped g-C3N4 nanosheet was prepared as a photocatalyst for effective oxygen evolution reaction. Sulfur plays a crucial role in S-doped g-C3N4 not only in increasing the charge density but also in reducing the energy band gap of S-doped g-C3N4 via substitution of nitrogen sites. S-doped g-C3N4 can serve as an oxygen-evolved photocatalyst, when combined with Ru/SrTiO3:Rh in the presence of [Co(bpy)(3)](3+/2+) as an electron mediator, enables photocatalytic overall water splitting under visible light irradiation with hydrogen and oxygen production rates of 24.6 and 14.5 mu mol-h(-1), respectively. Moreover, the photocatalytic overall water splitting to produce H-2 and O-2 using this Z-scheme system could use for five runs to at least 94.5 h under visible light irradiation. On the other hand, S-doped g-C3N4 can reduce biofouling by bacteria such as Escherichia toll by more than 70%, by simply incubating the Sdoped g-C3N4 sample with bacterial solution under light irradiation. Our results suggest that S-doped g-C3N4 is a potentially effective, green, and promising material for a variety of photocatalytic applications. (C) 2020 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据