4.7 Article

Evaluating sulfur-free lignin as a sustainable additive for soil improvement against frost resistance

期刊

JOURNAL OF CLEANER PRODUCTION
卷 251, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2019.119504

关键词

Sulfur-free lignin; Soil improvement; Freeze-thaw cycles; Sustainable geotechnical engineering; Bioethanol waste elimination

资金

  1. Key Program of International (Regional) Cooperation and Exchange of National Natural Science Foundation [41820104001]
  2. State Key Program of the National Natural Science Foundation of China [41430642]
  3. Special Fund for Major Scientific Instruments of the National Natural Science Foundation of China [41627801]
  4. State Scholarship Fund of China Scholarship Council (CSC) [201806170226]

向作者/读者索取更多资源

This study investigates using Sulfur-Free Lignin (SFL) as a stabilizer to reinforce soil for civil engineering construction. To comprehensively evaluate the engineering performance of SFL stabilized soil, 3, 7, 10, 12 and 15% mixtures were tested and the influence of climate factors (assessed subjecting the soil to different freeze-thaw cycles) was also considered. The experimental program investigated mechanical strength (unconfined compressive strength) and physicochemical properties, which included grain size distribution, Atterberg limits, variation of elemental and mineral composition, pH, cation exchange capacity, X-ray diffraction/fluorescence and thermal conductivity. In addition, micro-characterization through SEM and pore size distribution was also performed. A considerable improvement of the mechanical properties was observed, which increases with SFL content up to 12%. This was based on changes in the physical and not chemical properties, hinting that the stabilization mechanism consists in physical binding unlike for traditional soil stabilizers. Moreover, it was found that SFL addition improved frost resistance. Based on these results, utilizing SFL as a soil stabilizer for application in earthworks shows great potential and would promote the bio-ethanol industry and engineering construction to be more sustainable and greener, particularly because it does not risk inducing soil pH contamination unlike traditional chemical agents. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据