4.7 Article

Efficient hydrogen production from ethanol steam reforming over layer-controlled graphene-encapsulated Ni catalysts

期刊

JOURNAL OF CLEANER PRODUCTION
卷 252, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2019.119907

关键词

Ethanol steam reforming; H-2 production; Ni catalyst; Graphene defects; Density functional theory; Steam-assisted control

资金

  1. National Natural Science Foundation of China [21676148]

向作者/读者索取更多资源

Large-scale synthesis and applications of graphene-encapsulated metal catalysts remain a great challenge since it is difficult to control the thickness of graphene layers. In this study, graphene-encapsulated Ni nanoparticles (Ni@Gr) were fabricated via in-situ growth method. Steam-assisted control was carried out to decrease the graphene layer number. The layer-controlled Ni@Gr catalyst consisted of Ni core and graphene shell. The anchored metal was well defended against oxidation or acid etching. In addition, the influence of steam-gasification temperature on the nature of catalysts was also investigated. The catalyst obtained via steam-assisted control at 800 degrees C (Ni@Gr800) possessed excellent textural features, such as thinner graphene shell, more defects on the surface. Consequently, Ni@Gr800 catalyst presented superior initial activity and durability in the steam reforming of ethanol, especially at 550 degrees C. By density functional theory calculations, the presence of defects improved the adsorption energy of all reaction species. The carbonaceous deposition was the primary reason for catalyst deactivation. Textural features of Ni@Gr800 contributed to the formation of carbon filaments, which facilitated coke gasification on the catalyst. This work provides a procedure for controlling the graphene layer number of catalysts with graphene as the covering, and an approach to fabricate defects on the graphene surface. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据