4.7 Article

Comparison of Spin-Flip TDDFT-Based Conical Intersection Approaches with XMS-CASPT2

期刊

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
卷 16, 期 5, 页码 3253-3263

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.9b00917

关键词

-

资金

  1. NTU

向作者/读者索取更多资源

Determining conical intersection geometries is of key importance to understanding the photochemical reactivity of molecules. While many small- to medium-sized molecules can be treated accurately using multireference approaches, larger molecules require a less computationally demanding approach. In this work, minimum energy crossing point conical intersection geometries for a series of molecules have been studied using spin-flip TDDFT (SF-TDDFT), within the Tamm-Dancoff Approximation, both with and without explicit calculation of nonadiabatic coupling terms, and compared with both XMS-CASPT2 and CASSCF calculated geometries. The less computationally demanding algorithms, which do not require explicit calculation of the nonadiabatic coupling terms, generally fare well with the XMS-CASPT2 reference structures, while the relative energetics are only reasonably replicated with the MECP structure as calculated with the BHHLYP functional and full nonadiabatic coupling terms. We also demonstrate that, occasionally, CASSCF structures deviate quantitatively from the XMS-CASPT2 structures, showing the importance of including dynamical correlation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据