4.7 Article

Polaritonic normal modes in transition state theory

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 152, 期 16, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/5.0007547

关键词

-

资金

  1. Defense Advanced Research Projects Agency [D19AC00011]
  2. UC-MEXUS/CONACYT [235273/472318]

向作者/读者索取更多资源

A series of experiments demonstrates that strong light-matter coupling between vibrational excitations in isotropic solutions of molecules and resonant infrared optical microcavity modes leads to modified thermally activated kinetics. However, Galego et al. [Phys. Rev. X 9, 021057 (2019)] recently demonstrated that, within transition state theory, effects of strong light-matter coupling with reactive modes are mostly electrostatic and essentially independent of light-matter resonance or even of the formation of vibrational polaritons. To analyze this puzzling theoretical result in further detail, we revisit it under a new light, invoking a normal mode analysis of the transition state and reactant configurations for an ensemble of an arbitrary number of molecules in a cavity, obtaining simple analytical expressions that produce similar conclusions as Feist. While these effects become relevant in optical microcavities if the molecular dipoles are anisotropically aligned, or in cavities with extreme confinement of the photon modes, they become negligible for isotropic solutions in microcavities. It is concluded that further studies are necessary to track the origin of the experimentally observed kinetics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据