4.7 Article

The Synthesizability of Molecules Proposed by Generative Models

期刊

JOURNAL OF CHEMICAL INFORMATION AND MODELING
卷 60, 期 12, 页码 5714-5723

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jcim.0c00174

关键词

-

资金

  1. Machine Learning for Pharmaceutical Discovery and Synthesis consortium

向作者/读者索取更多资源

The discovery of functional molecules is an expensive and time-consuming process, exemplified by the rising costs of small molecule therapeutic discovery. One class of techniques of growing interest for early stage drug discovery is de novo molecular generation and optimization, catalyzed by the development of new deep learning approaches. These techniques can suggest novel molecular structures intended to maximize a multiobjective function, e.g., suitability as a therapeutic against a particular target, without relying on brute-force exploration of a chemical space. However, the utility of these approaches is stymied by ignorance of synthesizability. To highlight the severity of this issue, we use a data-driven computer-aided synthesis planning program to quantify how often molecules proposed by state-of-the-art generative models cannot be readily synthesized. Our analysis demonstrates that there are several tasks for which these models generate unrealistic molecular structures despite performing well on popular quantitative benchmarks. Synthetic complexity heuristics can successfully bias generation toward synthetically tractable chemical space, although doing so necessarily detracts from the primary objective. This analysis suggests that to improve the utility of these models in real discovery workflows, new algorithm development is warranted.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据