4.7 Article

A modified lysosomal organelle mediates nonlytic egress of reovirus

期刊

JOURNAL OF CELL BIOLOGY
卷 219, 期 7, 页码 -

出版社

ROCKEFELLER UNIV PRESS
DOI: 10.1083/jcb.201910131

关键词

-

资金

  1. Public Health Service awards [AI032539, AI122563, GM007347]

向作者/读者索取更多资源

Mammalian orthoreoviruses (reoviruses) are nonenveloped viruses that replicate in cytoplasmic membranous organelles called viral inclusions (Vis) where progeny virions are assembled. To better understand cellular routes of nonlytic reovirus exit, we imaged sites of virus egress in infected, nonpolarized human brain microvascular endothelial cells (HBMECs) and observed one or two distinct egress zones per cell at the basal surface. Transmission electron microscopy and 3D electron tomography (ET) of the egress zones revealed clusters of virions within membrane-bound structures, which we term membranous carriers (MCs), approaching and fusing with the plasma membrane. These virion-containing MCs emerged from larger, LAMP-1-positive membranous organelles that are morphologically compatible with lysosomes. We call these structures sorting organelles (50s). Reovirus infection induces an increase in the number and size of lysosomes and modifies the pH of these organelles from similar to 4.5-5 to similar to 6.1 after recruitment to Vls and before incorporation of virions. ET of VI-50-MC interfaces demonstrated that these compartments are connected by membrane-fusion points, through which mature virions are transported. Collectively, our results show that reovirus uses a previously undescribed, membrane-engaged, nonlytic egress mechanism and highlights a potential new target for therapeutic intervention.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据