4.7 Article

Understanding the thermal response of rice eukaryotic transcription factor eIF4A1 towards dynamic temperature stress: insights from expression profiling and molecular dynamics simulation

期刊

JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS
卷 39, 期 7, 页码 2575-2584

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/07391102.2020.1751295

关键词

DEAD-box helicase; ATP-binding; rice; qRT-PCR; molecular dynamics simulation; heat stress; cold stress

向作者/读者索取更多资源

eIF4A1 shows significantly increased expression in rice under temperature stress, and stronger ATP/Mg2+ binding at higher temperatures, suggesting its heat stress-tolerant capacity in rice.
Eukaryotic translation initiation factors (eIFs) are the group of regulatory proteins that are involved in the initiation of translation events. Among them, eIF4A1, a member of the DEAD-box RNA helicase family, participates in a wide spectrum of activities which include, RNA splicing, ribosome biogenesis, and RNA degradation. It is well known that ATP-binding and subsequent hydrolysis activities are crucial for the functionality of such helicases. Although the stress-responsive upregulation of eIF4A1 has been reported in plants during stress, it is difficult to anticipate the functionality of the corresponding protein product. Therefore, to understand the activity of eIF4A1 in rice in response to temperature stress, we first conducted an expression analysis of the gene and further investigated the structural stability of the eIF4A1-ATP/Mg2+ complex through molecular dynamics (MD) simulations at different temperature conditions (277 K, 300 K, and 315 K). Our results demonstrated a three to fourfold increased expression of rice eIF4A1 both in root and shoot at 42 degrees C compared to control. Furthermore, the MD simulation portrayed strong ATP/Mg2+ binding at a higher temperature in comparison to control and cold temperature. Overall, the increased expression pattern of eIF4A1 and strong ATP/Mg2+ binding at higher temperature indicated the heat stress-tolerant capacity of the gene in rice. The results from our study will help in understanding the activity of gene and guide the researchers for screening of novel stress inducible candidate genes for the engineering of temperature stress tolerant plants. Communicated by Ramaswamy H. Sarma

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据