4.6 Article

Raffinose synthase enhances drought tolerance through raffinose synthesis or galactinol hydrolysis in maize and Arabidopsis plants

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 295, 期 23, 页码 8064-8077

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.RA120.013948

关键词

Arabidopsis; carbohydrate metabolism; carbohydrate biosynthesis; carbohydrate function; galactosyltransferase; drought stress; galactinol hydrolysis; maize; raffinose synthase; raffinose synthesis

资金

  1. NSFC (National Science Foundation in China) [31671776]
  2. Ministry of Agriculture in China [2014ZX0800920B]

向作者/读者索取更多资源

Raffinose and its precursor galactinol accumulate in plant leaves during abiotic stress. RAFFINOSE SYNTHASE (RAFS) catalyzes raffinose formation by transferring a galactosyl group of galactinol to sucrose. However, whether RAFS contributes to plant drought tolerance and, if so, by what mechanism remains unclear. In this study, we report that expression of RAFS from maize (or corn, Zea mays) (ZmRAFS) is induced by drought, heat, cold, and salinity stresses. We found that zmrafs mutant maize plants completely lack raffinose and hyper-accumulate galactinol and are more sensitive to drought stress than the corresponding null-segregant (NS) plants. This indicated that ZmRAFS and its product raffinose contribute to plant drought tolerance. ZmRAFS overexpression in Arabidopsis enhanced drought stress tolerance by increasing myo-inositol levels via ZmRAFS-mediated galactinol hydrolysis in the leaves due to sucrose insufficiency in leaf cells and also enhanced raffinose synthesis in the seeds. Supplementation of sucrose to detached leaves converted ZmRAFS from hydrolyzing galactinol to synthesizing raffinose. Taken together, we demonstrate that ZmRAFS enhances plant drought tolerance through either raffinose synthesis or galactinol hydrolysis, depending on sucrose availability in plant cells. These results provide new avenues to improve plant drought stress tolerance through manipulation of the raffinose anabolic pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据