4.6 Article

Deep learning in heterogeneous materials: Targeting the thermo-mechanical response of unidirectional composites

期刊

JOURNAL OF APPLIED PHYSICS
卷 127, 期 17, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0002917

关键词

-

向作者/读者索取更多资源

In this communication, a multi-task deep learning-driven homogenization scheme is proposed for predicting the effective thermomechanical response of unidirectional composites consisting of a random array of inhomogeneity. Toward this end, 40000 repeating unit cells (RUCs) comprising an arbitrary number of locally irregular inclusions are generated over a wide range of fiber volume fractions. The finite-volume direct averaging micromechanics is then employed to evaluate the homogenized thermo-mechanical moduli of each RUC. Subsequently, a two-dimensional deep convolution neural network (CNN) is constructed as a surrogate model to extract the statistical correlations between the RUC geometrical information and the corresponding homogenized response. The RUC images together with their homogenized moduli are divided into two datasets in a ratio of 9:1 with the former part used for training the CNN model and the latter part used for verification. The results presented in this contribution demonstrate that the deep CNN predictions exhibit remarkable correlations with the theoretical values generated by the finite-volume micromechanics, with a maximum relative prediction error of less than 8%, providing good support for the data-based homogenization approach.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据