4.7 Article

Vacancy-modulated self-rectifying characteristics of NiOx/Al2O3-based nanoscale ReRAM devices

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 821, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2019.153247

关键词

ReRAM; Self-rectifying; Vacancy modulation; Forming-free; Nickel oxide; Aluminium oxide

资金

  1. National Research Foundation of Korea (NRF) - Korea government [2016R1A3B1908249]

向作者/读者索取更多资源

A vacancy-modulated self-rectifying resistive random access memory (ReRAM) with a Ti/NiOx/Al2O3/Pt structure is proposed in this study. Here, NiOx is used as a resistive switching layer, and Al2O3 is used as a tunnel barrier layer for producing self-rectifying behavior. The tunnel barrier thickness in the NiOx/Al2O3 interfacial region can be increased or decreased according to the movement of oxygen vacancies in the NiOx layer under positive or negative voltages, respectively, thereby leading to self-rectifying resistive switching behavior. As a result, the NiOx/Al2O3-based self-rectifying ReRAM exhibits a low operation current of similar to 3 x 10(-7) A, large ON/OFF ratio of similar to 6 x 10(3), high rectification ratio of similar to 5 x 10(2), long retention of 10(5) s, and forming-free and self-compliance characteristics, meeting the next generation ReRAM requirements. The Ti/NiOx/Al2O3/Pt-based self-rectifying structures can pave the way to develop high-density embedded memory applications in the future. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据