4.7 Article

Effect of heat treatment on microstructure, mechanical, corrosion and biocompatibility of Mg-Zn-Zr-Gd-Nd alloy

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 821, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2019.153462

关键词

Mg alloy; Rare earth; Powder metallurgy; Heat treatment; Corrosion; Biocompatibility

资金

  1. Department of Science and Technology (DST), New Delhi, India [SR/WOS-A/ET-44/2016]

向作者/读者索取更多资源

Pure Mg and prealloyed Mg-Gd-Nd-Zr-Zn alloy samples were prepared using powder metallurgy route and further heat treated. The effects of heat treatment on the microstructure, mechanical , corrosion resistance and biocompatibility properties of these samples were investigated. Microstructural analysis showed alpha-Mg matrix with secondary phases like Mg3Gd/Nd, Mg12Gd/Nd and Mg41Nd5 in the Mg alloy. After heat treatment, 250 degrees C for 12 h, both samples showed improvement in the hardness and compressive strength due to rearrangement of the secondary phases and grains. However, the hardness and compressive strength of Mg alloy (54 +/- 5 HV and 239 +/- 23 MPa) was higher than pure Mg, which were further improved with heat treatment (61 +/- 4 HV and 260 +/- 21 MPa). The corrosion potential of Mg alloy was more positive (-1.51V) than pure Mg (-1.61V) signifying its better resistance to corrosion initiation. However, the Mg alloy exhibited higher corrosion current than pure Mg due to galvanic effect of secondary phases. In vitro tissue culture experiments demonstrated good biocompatibility of both samples and therefore present high strength Mg alloy can be better choice as biodegradable implants. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据