4.7 Article

Effects of nitrogen alloying and friction stir processing on the microstructures and mechanical properties of CoCrFeMnNi high-entropy alloys

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 822, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2019.153512

关键词

High-entropy alloys; Nitrogen alloying; Friction stir processing; Microstructure; Mechanical properties

向作者/读者索取更多资源

Equiatomic CoCrFeMnNi high-entropy alloys (HEAs) with and without nitrogen alloying were produced by vacuum induction melting and then subjected to friction stir processing. The effects of nitrogen alloying and friction stir processing on the microstructures and mechanical properties of these alloys were systematically investigated. The results suggested that nitrogen alloying effectively increases the yield strength and ultimate tensile strength of CoCrFeMnNi HEAs in the as-cast condition. Friction stir processing considerably broke down the coarse dendritic structures of the as-cast HEAs and caused grain refinement and composition homogenization. More significantly, nitrogen alloying promoted grain refinement by increasing the nucleation rate and retarding grain growth during dynamic recrystallization over the course of friction stir processing. The yield strength, ultimate tensile strength, and uniform elongation of CoCrFeMnNi HEAs treated by nitrogen alloying and friction stir processing reached 493 MPa, 832 MPa, and 32.6%, respectively. These improvements could be attributed to solid solution strengthening through nitrogen alloying and grain boundary strengthening by friction stir processing. This study provides an alternative technical route to enhance the mechanical properties of CoCrFeMnNi HEAs. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据