3.9 Article

Assessment and comparison of putative amine receptor complement/diversity in the brain and eyestalk ganglia of the lobster, Homarus americanus

期刊

INVERTEBRATE NEUROSCIENCE
卷 20, 期 2, 页码 -

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s10158-020-0239-5

关键词

Dopamine; Octopamine; Tyramine; Serotonin; Histamine; In silico transcriptome mining

资金

  1. National Science Foundation [IOS-1353023, IOS-1856307, IOS-1354567, IOS-1856433]
  2. National Institutes of Health (INBRE) [8P20GM103423-12]
  3. Cades Foundation
  4. base CRIS from US Department of Agriculture [2020-22620-022-00D]

向作者/读者索取更多资源

In decapods, dopamine, octopamine, serotonin, and histamine function as locally released/hormonally delivered modulators of physiology/behavior. Although the functional roles played by amines in decapods have been examined extensively, little is known about the identity/diversity of their amine receptors. Recently, a Homarus americanus mixed nervous system transcriptome was used to identify putative neuronal amine receptors in this species. While many receptors were identified, some were fragmentary, and no evidence of splice/other variants was found. Here, the previously predicted proteins were used to search brain- and eyestalk ganglia-specific transcriptomes to assess/compare amine receptor complements in these portions of the lobster nervous system. All previously identified receptors were reidentified from the brain and/or eyestalk ganglia transcriptomes, i.e., dopamine alpha-1, beta-1, and alpha-2 (Homam-DA alpha 2R) receptors, octopamine alpha (Homam-Oct alpha R), beta-1, beta-2, beta-3, beta-4, and octopamine-tyramine (Homam-OTR-I) receptors, serotonin type-1A, type-1B (Homam-5HTR1B), type-2B, and type-7 receptors; and histamine type-1 (Homam-HA1R), type-2, type-3, and type-4 receptors. For many previously partial proteins, full-length receptors were deduced from brain and/or eyestalk ganglia transcripts, i.e., Homam-DA alpha 2R, Homam-Oct alpha R, Homam-OTR-I, and Homam-5HTR1B. In addition, novel dopamine/ecdysteroid, octopamine alpha-2, and OTR receptors were discovered, the latter, Homam-OTR-II, being a putative paralog of Homam-OTR-I. Finally, evidence for splice/other variants was found for many receptors, including evidence for some being assembly-specific, e.g., a brain-specific Homam-OTR-I variant and an eyestalk ganglia-specific Homam-HA1R variant. To increase confidence in the transcriptome-derived sequences, a subset of receptors was cloned using RT-PCR. These data complement/augment those reported previously, providing a more complete picture of amine receptor complement/diversity in the lobster nervous system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据