4.6 Article

Uniqueness criteria in multi-energy CT

期刊

INVERSE PROBLEMS
卷 36, 期 6, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1361-6420/ab844b

关键词

multi-energy CT; spectral CT; dual-energy CT; global uniqueness; invertibility; injective

资金

  1. NSF [DMS-1908736]
  2. ONR [N00014-17-1-2096]

向作者/读者索取更多资源

Multi-energy computed tomography (ME-CT) is a medical imaging modality aiming to reconstruct the spatial density of materials from the attenuation properties of probing x-rays. For each line in two- or three-dimensional space, ME-CT measurements may be written as a nonlinear mapping from the integrals of the unknown densities of a finite number of materials along said line to an equal or larger number of energy-weighted integrals corresponding to different x-ray source energy spectra. ME-CT reconstructions may thus be decomposed as a two-step process: (i) reconstruct line integrals of the material densities from the available energy measurements; and (ii) reconstruct densities from their line integrals. Step (ii) is the standard linear x-ray CT problem whose invertibility is well-known, so this paper focuses on step (i). We show that ME-CT admits stable, global inversion provided that (a well-chosen linear transform of) the differential of the transform in step (i) satisfies appropriate orientation constraints that makes it a P-matrix. We introduce a notion of quantitative P-function that allows us to derive global stability results for ME-CT in the determined as well as over-determined (with more source energy spectra than the number of materials) cases. Numerical simulations based on standard material properties in imaging applications (of bone, water, contrast agents) and well accepted models of source energy spectra show that ME-CT is often (always in our simulations) either (i) non-globally injective because it is non-injective locally (differential not of full rank), or (ii) globally injective as soon as it is locally injective (differentials satisfy our proposed constraints).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据