4.4 Article

Response of nephelometric turbidity to hydrodynamic particle size of fine suspended sediment

期刊

INTERNATIONAL JOURNAL OF SEDIMENT RESEARCH
卷 35, 期 5, 页码 444-454

出版社

IRTCES
DOI: 10.1016/j.ijsrc.2020.03.006

关键词

Turbidity; Nephelometry; Suspended sediment concentration; Particle size distribution; Particulate organic matter

资金

  1. New Zealand Hydrological Society
  2. University of Otago

向作者/读者索取更多资源

Turbidity is used as a surrogate for suspended sediment concentration (SSC), and as a regulatory tool for indicating land use disturbance and environmental protection. Turbidity relates linearly to suspended material, however, can show non-linear responses to particulate organic matter (POM), concomitant with changes in particle size distribution (PSD). In the paper the influence of ultra-fine particulate matter (UFPM) on specific turbidity and its association with POM in suspended sediment are shown for alpine rivers in the Southern Alps of New Zealand. The approach was two-fold: a field-based investigation of the relations between SSC, POM, and turbidity sampled during event flow; and experimental work on hydrodynamic particle size effects on SSC, POM, PSD, and turbidity. Specific turbidity changes over event flow and are sensitive to increasing proportional amounts of sand, UFPM, and POM in suspension. Furthermore, the UFPM is the size fraction (<6 mu m) where POM increases. The implications of the current study are that the slopes of turbidity-SSC relations are undesirable in locations that may be dominated by cyclic release of POM or distinct pulses of fine-grained material. At locations where the turbidity-SSC slopes approximate 2, the POM proportion is usually <10% of the total suspended load. However, when turbidity-SSC slopes are <1 this is likely caused by high amounts of side-scatter from UFPM concomitant with higher proportions of POM. Thus, the use of turbidity as a proxy for determining SSC may have serious consequences for the measurement of representative suspended sediment data, particularly in locations where POM may be a significant contributor to overall suspended load. (C) 2020 International Research and Training Centre on Erosion and Sedimentation/the World Association for Sedimentation and Erosion Research. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据