4.7 Article

Modeling and analysis of soft robotic fingers using the fin ray effect

期刊

INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH
卷 39, 期 14, 页码 1686-1705

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/0278364920913926

关键词

Soft robotics; compliant mechanisms; grasping; fin ray effect; industrial grippers

类别

资金

  1. Natural Sciences and Engineering Research Council [RGPIN327005]

向作者/读者索取更多资源

Soft grasping of random objects in unstructured environments has been a research topic of predilection both in academia and in industry because of its complexity but great practical relevance. However, accurate modeling of soft hands and fingers has proven a difficult challenge to tackle. Focusing on this issue, this article presents a detailed mathematical modeling and performance analysis of parallel grippers equipped with soft fingers taking advantage of the fin ray effect (FRE). The FRE, based on biomimetic principles, is most commonly found in the design of grasping soft fingers, but despite their popularity, finding a convenient model to assess the grasp capabilities of these fingers is challenging. This article aims at solving this issue by providing an analytic tool to better understand and ultimately design this type of soft fingers. First, a kinetostatic model of a general multi-crossbeam finger is established. This model will allow for a fast yet accurate estimation of the contact forces generated when the fingers grasp an arbitrarily shaped object. The obtained mathematical model will be subsequently validated by numerically to ensure the estimations of the overall grasp strength and individual contact forces are indeed accurate. Physical experiments conducted with 3D-printed fingers of the most common architecture of FRE fingers will also be presented and shown to support the proposed model. Finally, the impact of the relative stiffness between different areas of the fingers will be evaluated to provide insight into further refinement and optimization of these fingers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据