4.4 Article Proceedings Paper

Many-body response of benzene at monolayer MoS2: Van der Waals interactions and spectral broadening

期刊

出版社

WILEY
DOI: 10.1002/qua.26243

关键词

linear response; many body dispersion; TDDFT; van der Waals

资金

  1. Rutgers, The State University of New Jersey
  2. U.S. Department of Energy
  3. Basic Energy Sciences

向作者/读者索取更多资源

Models of surface enhancement of molecular electronic response properties are challenging for two reasons: (a) molecule-surface interactions require a simultaneous solution of the molecular and the surface dynamic response (a daunting task), and (b) when solving for the electronic structure of the combined molecule + surface system, it is not trivial to single out the particular physical effects responsible for enhancement. To tackle this problem, in this work, we apply a formally exact decomposition of the system's response function into subsystem contributions by using subsystem density functional theory (DFT), which grants access to dynamic polarizabilities and optical spectra. In order to access information about the interactions between the subsystems, we extend a previously developed subsystem-based adiabatic connection fluctuation-dissipation theorem of DFT to separate the additive from the nonadditive correlation energy and identify the nonadditive correlation as the van der Waals interactions. As an example, we choose benzene adsorbed on monolayer MoS2. We isolate the contributions to benzene's dynamic response arising from the interaction with the surface, and for the first time, we evaluate the enhancements to the effectiveness of C-6 coefficients as a function of benzene-MoS2 distance and adsorption site. We also quantify the spectral broadening of the benzene's electronic excited states due to their interaction with the surface. We find that the broadening has a similar decay law with the molecule-surface distance as the leading van der Waals interactions (ie, R-6) and that the surface enhancement of dispersion interactions between benzene molecules is less than 5% but is still large enough (0.5 kcal/mol) to likely play a role in the prediction of interface morphologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据