4.7 Article

Reversible energy absorbing meta-sandwiches by FDM 4D printing

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijmecsci.2020.105451

关键词

Shape memory polymers; Hyper-elastics; Auxetics; Sandwich; 4D printing; Energy absorption

向作者/读者索取更多资源

The aim of this paper is to introduce dual-material auxetic meta-sandwiches by four-dimensional (4D) printing technology for reversible energy absorption applications. The meta-sandwiches are developed based on an understanding of hyper-elastic feature of soft polymers and elasto-plastic behaviors of shape memory polymers and cold programming derived from theory and experiments. Dual-material lattice-based meta-structures with different combinations of soft and hard components are fabricated by 4D printing fused deposition modelling technology. The feasibility and performance of reversible dual-material meta-structures are assessed experimentally and numerically. Computational models for the meta-structures are developed and verified by the experiments. Research trials show that the dual-material auxetic designs are capable of generating a range of non-linear stiffness as per the requirement of energy absorbing applications. It is found that the meta-structures with hyper-elastic and/or elasto-plastic features dissipate energy and exhibit mechanical hysteresis characterized by non-coincident compressive loading-unloading curves. Mechanical hysteresis can be achieved by leveraging elasto-plasticity and snap-through-like mechanical instability through compression. Experiments also reveal that the mechanically induced plastic deformation and dissipation processes are fully reversible by simply heating. The material-structural model, concepts and results provided in this paper are expected to be instrumental towards 4D printing tunable meta-sandwiches for reversible energy absorption applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据