4.7 Article

Hydrogen separation from synthesis gas using silica membrane: CFD simulation

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 45, 期 38, 页码 19381-19390

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2020.05.032

关键词

Hydrogen separation; CFD; Silica membrane; Synthesis gas

向作者/读者索取更多资源

In the present article, an axisymmetric two-dimensional (2D) computational fluid dynamic (CFD) model was adapted to predict the efficiency of the silica membrane for hydrogen (H-2) separation as a renewable energy source. In this model, continuum flows on the shell and tube sides are defined through the Navier-Stokes and transport of chemical species equations. Components transfer through the silica membrane is characterized by introducing source-sink terms based on activating transport mechanisms. To validate the presented model results related to H-2 molar fraction at the retentate and permeate sides were compared with experimental data. The CFD model prognosticates the local information of velocity distribution and the molar fraction of the components. Finally, considering the effects of temperature, pressure difference, gas flow rate, and inner radius of the module on the H2 molar fraction, silica membrane performance was investigated. Moreover, it has been shown that with increasing working temperature from 323 to 473 K, H-2 molar fraction at the shell side decreases from 59% to 28.4%, and in the tube side, it rises from 78.8% to 82.8%. On the shell side, it could be seen that H-2 permeates better for a low gas flow rate. At the tube side, this parameter has a positive effect on H-2 purification. The result of the impact of pressure differences at shell and tube sides was used to indicate the variation in the H-2 molar fraction. An increase in pressure difference causes a decrease of H-2 molar fraction at the tube side. At the shell side, H(2 )molar fraction would be decreased with an addition in pressure difference from 1 to 3 bar. Any further pressure difference rise from 3 to 4 bar, make this trend ascending. Likewise, at the shell and tube sides, by enhancing the inner radius of the module, the molar fraction of H-2 increases. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据