4.7 Article

Roughness effects of gas diffusion layers on droplet dynamics in PEMFC flow channels

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 45, 期 35, 页码 17869-17881

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2020.04.228

关键词

Gas diffusion layer; Liquid removal; Surface roughness; PEMFC; Water transport

资金

  1. Australian Research Council [DP170102886]
  2. University of Sydney SOAR Fellowship

向作者/读者索取更多资源

Water management remains one of the major challenges in optimising the performance of PEMFCs, in which liquid accumulation and removal in gas diffusion layers (GDLs) and flow channels should be addressed. Here, effects of GDL surface roughness on the water droplet removal inside a PEMFC flow channel have been investigated using the Volume of Fluid method. Rough surfaces are generated according to realistic GDL properties by incorporating RMS roughness and roughness wavelength as the main characteristic parameters. Droplet dynamics including emergence, growth, detachment, and removal in flow channels with various airflow rates are simulated on rough substrates. The influences of airflow rate on droplet dynamics are also discussed by comparing the detachment time and droplet morphology. The liquid removal efficiency subject to different surface roughness parameters is evaluated by droplet detachment time and elongation, and regimes of detachment modes are identified based on the droplet breakup location and detachment ratio. The results suggest that rough surfaces with higher RMS roughness can facilitate the removal of liquid inside flow channel. Whilst surface roughness wavelength is found less significant to the liquid removal efficiency. The results here provide qualitative assessments on identifying the key surface characteristics controlling droplet motion in PEMFC channels. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据