4.7 Article

InP/TiO2 heterojunction for photoelectrochemical water splitting under visible-light

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 45, 期 20, 页码 11615-11624

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2020.02.094

关键词

TiO2; Heterojunction; Hydrogen production; Density functional theory

资金

  1. National Natural Science Fund of China [21603275]
  2. Key Research and Development Project of Shandong Province [2019GSF109079]

向作者/读者索取更多资源

Hydrogen production through photoelectrochemical (PEC) water splitting on photocatalyst is a green and clean method. In this study, we use density functional theory (DFT) calculations to find that the cage-like InP quantum dots (QDs) sensitized TiO2 is an effective photocatalyst for PEC water splitting under visible-light. A 16-ps first-principle molecular dynamics (FPMD) simulation results indicate that the cage-like InP-12, InP-16, InP-20, InP-24, InP-28, and InP-36 QDs are stable at room temperature (300 K). Furthermore, the calculated energy gaps of InP-16, InP-20, InP-24, InP-28, and InP-36 QDs are about 2.0 eV, which are suitable for visible-light absorption. Stable InP-20/TiO2 heterojunction structure was also obtained by FPMD simulation, and the electronic structure calculation result indicates that the InP-20/TiO2 heterojunction has a favorable type-II band aligment, which could prevent the recombination of photoexcited carriers. Finally, the possible reaction pathways of hydrogen production on InP-20/TiO2 heterojunction were investigated. It is found that energy barrier of hydrogen production of the InP-20/TiO2 is 2.56 eV lower than pure TiO2. Our calculations imply that InP QDs sensitized anatase TiO2 is an effective photocatalyst for visible-light PEC water splitting. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据