4.7 Article

Effect of porosity and crack on the thermoelectric properties of expanded graphite/carbon fiber reinforced cement-based composites

期刊

INTERNATIONAL JOURNAL OF ENERGY RESEARCH
卷 44, 期 8, 页码 6885-6893

出版社

WILEY
DOI: 10.1002/er.5437

关键词

carbon fiber; cement-based composites; cracks; expanded graphite; porosity; thermoelectric properties

资金

  1. Natural Science Basic Research Plan in Shaanxi Province of China [2017ZDJC-18]
  2. National Natural Science Foundation of China [51308447, 51578448]
  3. Technology Foundation for Selected Overseas Chinese Scholar, Ministry of Human Resources and Social Security, of the People's Republic of China [Shan Ren She Han [2016]789]

向作者/读者索取更多资源

Cement-based composites is a promising type of structural material, which has prospective applications in relieving the urban heat island effect in summer and melted snow with low energy consumption. However, the major drawbacks of cement-based composites are heterogeneity, porosity, and brittleness. Porosity and microcrack have considerable influence on the thermoelectric of cement-based composites applied in large-scale concrete structures in future. This paper studied in detail the effect of porosity and crack on thermoelectric properties of the cement-based composite. The proper pores and cracks in the cement matrix are advantageous to enhance the Seebeck effect, but meanwhile it also reduces the electrical conductivity. So combined with Seebeck effect, electrical conductivity and other factors, it can obtain a comparatively low electrical conductivity (0.063S cm(-1)) of expanded graphite/carbon fiber reinforced cement-based composites (EG-CFRC), but EG-CFRC manifests the maximum thermoelectric figure of merit (ZT) has reached 2.22 x 10(-7) when the porosity is 3.90%. With different porosity, the Seebeck effect of prepared EG-CFRC was strengthened when the crack existed. The effect is most pronounced by a factor of 2 when the porosity is 28.90%. Therefore, based on stabilizing the conductivity, the crack is fittingly made to have a good effect on the Seebeck coefficient.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据