4.7 Article

Online state of health prediction method for lithium-ion batteries, based on gated recurrent unit neural networks

期刊

INTERNATIONAL JOURNAL OF ENERGY RESEARCH
卷 44, 期 8, 页码 6767-6777

出版社

WILEY
DOI: 10.1002/er.5413

关键词

battery management system; gated recurrent unit; lithium-ion battery; long-short term memory; online state prediction; recurrent neural networks; state of health

向作者/读者索取更多资源

Online state of health (SOH) prediction of lithium-ion batteries remains a very important problem in assessing the safety and reliability of battery-powered systems. Deep learning techniques based on recurrent neural networks with memory, such as the long short-term memory (LSTM) and gated recurrent unit (GRU), have very promising advantages, when compared to other SOH estimation algorithms. This work addresses the battery SOH prediction based on GRU. A complete BMS is presented along with the internal structure and configuration parameters. The neural network was highly optimized by adaptive moment estimation (Adam) algorithm. Experimental data show very good estimation results for different temperature values, not only at room value. Comparisons performed against other relevant estimation methods highlight the performance of the recursive neural network algorithms such as GRU and LSTM, with the exception of the battery regeneration points. Compared to LSTM, the GRU algorithm gives slightly higher estimation errors, but within similar prediction error range, while needing significantly fewer parameters (about 25% fewer), thus making it a very suitable candidate for embedded implementations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据