4.7 Article

Nanostructured Ni2SeS on Porous-Carbon Skeletons as Highly Efficient Electrocatalyst for Hydrogen Evolution in Acidic Medium

期刊

INORGANIC CHEMISTRY
卷 59, 期 9, 页码 6018-6025

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.0c00012

关键词

-

资金

  1. National Natural Science Foundation of China (NSFC) [21771140, 51271132, 91222103, 11474047]
  2. Royal Society UK [IE161019]
  3. NSFC

向作者/读者索取更多资源

Nickel dichalcogenides have received extensive attention as promising noble-metal-free nanocatalysts for a hydrogen evolution reaction. Nonetheless, their catalytic performance is restricted by the sluggish reaction kinetics, limited exposed active sites, and poor conductivity. In this work, we report on an effective strategy to solve those problems by using an as-designed new porous-C/Ni2SeS nanocatalyst with the Ni2SeS nanostubs anchored on with porous-carbon skeletons process. On the basis of three advantages, as the enhancement of the intrinsic activity using the ternary sulfoselenide, increased number of exposed active sites due to the 3D hollow substrate, and increased conductivity caused by porous-carbon skeletons, the resulting porous-C/Ni2SeS requires an overpotential of only 121 mV at a current density of 10 mA cm(-2) with a Tafel slope of 78 mV dec(-1) for hydrogen evolution in acidic media and a good long-term stability. Density functional theory calculations also show that the Gibbs free energy of hydrogen adsorption of the Ni 2 SeS was -0.23 eV, which not only is close to the ideal value (0 eV) and Pt reference (-0.09 eV) but also is lower than those of NiS2 and NiSe2; large electrical states exist in the vicinity of the Fermi level, which further improves its electrocatalytic performance. This work provides new insights into the rational design of ternary dichalcogenides and hollow structure materials for practical applications in HER catalysis and energy fields.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据