4.7 Article

Effect of crystallite size, Raman surface modes and surface basicity on the gas sensing behavior of terbium-doped SnO2 nanoparticles

期刊

CERAMICS INTERNATIONAL
卷 42, 期 3, 页码 4323-4332

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2015.11.111

关键词

SnO2; Nanoparticles; Rare earth doping; Sensor response

资金

  1. University Grants Commission (UGC), India

向作者/读者索取更多资源

In the present work, we report the structural, optical and gas sensing properties of Tb3+-doped SnO2 nanoparticles. XRD results confirmed tetragonal rutile structure of both undoped and Tb3+-doped SnO2 nanoparticles which was further confirmed from Raman results. The increase of dopant concentration resulted in decrease in crystallite size which has been confirmed from XRD and TEM results. Raman spectra exhibited bands positioned at 562 and 487 cm(-1) whose contribution has been found to increase with decrease in crystallite size. The shifting and broadening of Raman active bands has been explained by well-known phonon confinement model. EDS analysis inveterate presence of terbium in the doped SnO2 nanoparticles. It has been observed that 3% doped samples exhibited optimum sensor response towards ethanol vapor. The optimum operable temperature of doped samples has been reduced as compared to undoped samples. The enhanced sensor response of doped nanoparticles is attributed to the small crystallite size, high surface basicity and enhanced contribution of Raman surface vibration modes of nanoparticles. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据