4.7 Article

RBF-Neural-Network-Based Adaptive Robust Control for Nonlinear Bilateral Teleoperation Manipulators With Uncertainty and Time Delay

期刊

IEEE-ASME TRANSACTIONS ON MECHATRONICS
卷 25, 期 2, 页码 906-918

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMECH.2019.2962081

关键词

Adaptive robust control; bilateral teleoperation; good transparency; neural network; time delays; uncertainties

向作者/读者索取更多资源

The bilateral teleoperation system has raised expansive concern as its excellent behaviors in executing the tasks in the remote, unstructured, and dangerous areas via the cooperative operation systems. In this article, an radial basis function (RBF) neural network based adaptive robust control design is proposed for nonlinear bilateral teleoperation manipulators to cope with the main issues including the communication time delay, various nonlinearities, and uncertainties. Specifically, the slave environmental dynamics is modeled by a general RBF neural network, and its parameters are estimated and then transmitted for the environmental torque reconstruction in the master side. Since the parameters of the neural network (which are nonpower signals) are transmitted instead of the traditional environmental torque in the communication channel, the previous existing passivity problem under time delay is avoided. In both of master and slave sides, the trajectory creators are applied to generate the desired trajectories, and the RBF-neural-network-based adaptive robust controllers are designed subsequently to handle the nonlinearities and uncertainties. Theoretically, the proposed control algorithm can guarantee the global stability of bilateral teleoperation manipulators under time delay, and the good transparency performance with both position tracking and force feedback is also achieved simultaneously. The real platform comparative experiments are carried out, and the results show the good position tracking to execute precise operation and the good force feedback to detect the sudden disturbance in the environment dynamics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据