4.7 Article

Security Enhanced Content Sharing in Social IoT: A Directed Hypergraph-Based Learning Scheme

期刊

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
卷 69, 期 4, 页码 4403-4416

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TVT.2020.2975884

关键词

Social Internet of Things; directed hypergraph; game theory; machine learning

资金

  1. Key Research & Development Project for Science and Technology of Xuzhou, China [KC18105]
  2. National Natural Science Foundation of China [51734009, 61771417, 51804304, 61871065]
  3. Newton Fund Institutional Link through the Fly-by Flood Monitoring Project [428328486]

向作者/读者索取更多资源

Security is a critical element to the existing Internet of Things (IoT) deployment, where any user may actively or passively attack the content sharing of others reusing the same channel. As most smart devices are carried by human, we may leverage their owners' social trust to avoid being intercepted by untrusted users, which conforms to the Social Internet of Things (SIoT) paradigm. In this paper, we propose a secure content sharing (SCS) scheme to strike the trade-off between security and quality of experience (QoE) by exploring the social trust. Firstly, to dynamically extract the social trust, the random walk strategy is employed for prediction based on the proposed User-Content-Social Group graph which models users' preference over time. Given the social trust value, we propose a hierarchical game model to decouple the optimization problem into two sub-problems: user pairing and channel selection. More specifically, the user pairing sub-problem is formulated as a matching sub-game with peer effect, and the embedded rotation-swap matching algorithm can accommodate the dynamics caused by mutual interference. The second sub-problem can be formulated as a secure channel selection sub-game with the directed hypergraph being game space, which is proved to be an exact potential game. Then, we design an uncoupled-user concurrent learning algorithm (UUCL) to search for the optimal pure Nash equilibrium, and thereby the global optimum of this sub-game is achieved. Finally, simulation results generated on realistic social dataset verify that our proposed scheme can notably enhance the security without sacrificing users' QoE.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据