4.6 Article Proceedings Paper

An Integrated Energy Management Approach for the Economic Operation of Industrial Microgrids Under Uncertainty of Renewable Energy

期刊

IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS
卷 56, 期 2, 页码 1062-1073

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIA.2020.2964635

关键词

Battery energy storage; industrial microgrids; integrated energy management; renewable energy uncertainty

资金

  1. Higher Education Commission Pakistan
  2. University of Wollongong Australia Research Scholarship Program

向作者/读者索取更多资源

Many modern industries are equipped with onsite renewable generation and are normally connected to the grid. A battery energy storage system (BESS) can complement the intermittency of the available onsite renewable generation. The combination of the BESS and the renewable generation can operate as a microgrid. If the microgrid is properly sized and managed, it is possible to reduce the electricity bill to have a huge saving in the electricity cost. This article proposes an energy management system for such an industrial microgrids. The decisions to charge and discharge the BESS in the proposed energy management are usually constrained by the size of the energy storage. The proposed energy management strategy aims to optimize the operation of the industrial microgrids subject to the scalability of the BESS under uncertainties. The proposed optimization involves two stages. In the first stage of optimization, it determines the optimum size of the energy storage taking into account the cost of the BESS, and in the second stage, it minimizes the cost of the microgrid operation based on the decision made in the first stage. This proposed two-stage energy management strategy is formulated as a single-stage linear program that incorporates stochastic scenarios for addressing uncertainties. In addition, the proposed strategy also considers the various operating limits of the energy storage, such as the efficiency and the charging and the discharging rates, and considers the fading effect of the batteries of the BESS. The proposed strategy is then validated using two typical datasets from two different industrial units in New South Wales, Australia. The simulation results show that the proposed strategy effectively calculates the optimum size of the BESS and reduces the operational cost.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据