4.8 Article

Active Disturbance-Rejection-Based Speed Control in Model Predictive Control for Induction Machines

期刊

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
卷 67, 期 4, 页码 2574-2584

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIE.2019.2912785

关键词

Torque; Induction machines; Stators; Predictive control; Torque control; Electromagnetics; Mathematical model; Induction machine; model predictive control (MPC); nonlinear prediction error

资金

  1. National Natural Science Foundation of China [51877207]
  2. Chilean Research Fund [FB0008, 1170167]

向作者/读者索取更多资源

Finite set model predictive torque control (FCSMPTC) of induction machines has received widespread attention in recent years due to its fast dynamic response, intuitive concept, and ability to handle nonlinear constraints. However, FCSMPTC essentially belongs to the open-loop control paradigm, and unmatched parameters inevitably cause electromagnetic torque tracking error. In addition, the outer loop (i.e., the speed loop) based on a proportional-integral (PI) regulator cannot achieve optimal control between speed dynamic response and torque tracking error compensation. The traditional control paradigm is abbreviated as PI-MPTC. In order to solve the aforementioned problem, this paper proposes active disturbance-rejection-based model predictive torque control (ADR-MPTC). First, the influence mechanism of mismatched parameters on torque prediction error in PI-MPTC is studied, and then the performance of a traditional PI regulator used to compensate for torque prediction error is analyzed. Second, this paper introduces several parts of the proposed ADR-MPTC, including the design of the torque prediction error observer, nonlinear prediction error compensation strategies, an enhanced predictive torque control, and a simplified full-order flux observer. Finally, PI-MPTC and ADR-MPTC are studied experimentally. The experimental results show that compared with PI-MPTC, ADR-MPTC performs better in dynamic and steady states, and has stronger robustness.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据