4.8 Article

Plant's-eye view of temperature governs elevational distributions

期刊

GLOBAL CHANGE BIOLOGY
卷 26, 期 7, 页码 4094-4103

出版社

WILEY
DOI: 10.1111/gcb.15129

关键词

biophysical traits; carbon stable isotope ratio; decoupling; leaf dry matter content; mountain; oxygen stable isotope ratio; plant height; temperature

资金

  1. Czech Science Foundation [GACR17-19376S]
  2. National Natural Science Foundation of China [31770435]
  3. Czech Academy of Sciences [RVO 67985939]

向作者/读者索取更多资源

Explaining species geographic distributions by macroclimate variables is the most common approach for getting mechanistic insights into large-scale diversity patterns and range shifts. However, species' traits influencing biophysical processes can produce a large decoupling from ambient air temperature, which can seriously undermine biogeographical inference. We combined stable oxygen isotope theory with a trait-based approach to assess leaf temperature during carbon assimilation (T-L) and its departure (Delta T) from daytime free air temperature during the growing season (T-gs) for 158 plant species occurring from 3,400 to 6,150 m a.s.l. in Western Himalayas. We uncovered a general extent of temperature decoupling in the region. The interspecific variation in Delta T was best explained by the combination of plant height and delta(13) C, and leaf dry matter content partly captured the variation in T-L. The combination of T-L and Delta T, with Delta T contributing most, explained the interspecific difference in elevational distributions. Stable oxygen isotope theory appears promising for investigating how plants perceive temperatures, a pivotal information to species biogeographic distributions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据