4.8 Article

Characterizing biogeochemical fluctuations in a world of extremes: A synthesis for temperate intertidal habitats in the face of global change

期刊

GLOBAL CHANGE BIOLOGY
卷 26, 期 7, 页码 3858-3879

出版社

WILEY
DOI: 10.1111/gcb.15103

关键词

acidification; carbonate chemistry; diel cycle; fluctuation; tide pool; warming

资金

  1. NSW Environmental Trust
  2. University of Sydney

向作者/读者索取更多资源

Coastal and intertidal habitats are at the forefront of anthropogenic influence and environmental change. The species occupying these habitats are adapted to a world of extremes, which may render them robust to the changing climate or more vulnerable if they are at their physiological limits. We characterized the diurnal, seasonal and interannual patterns of flux in biogeochemistry across an intertidal gradient on a temperate sandstone platform in eastern Australia over 6 years (2009-2015) and present a synthesis of our current understanding of this habitat in context with global change. We used rock pools as natural mesocosms to determine biogeochemistry dynamics and patterns of eco-stress experienced by resident biota. In situ measurements and discrete water samples were collected night and day during neap low tide events to capture diurnal biogeochemistry cycles. Calculation of pH(T) using total alkalinity (TA) and dissolved inorganic carbon (DIC) revealed that the mid-intertidal habitat exhibited the greatest flux over the years (pH(T) 7.52-8.87), and over a single tidal cycle (1.11 pH(T) units), while the low-intertidal (pH(T) 7.82-8.30) and subtidal (pH(T) 7.87-8.30) were less variable. Temperature flux was also greatest in the mid-intertidal (8.0-34.5 degrees C) and over a single tidal event (14 degrees C range), as typical of temperate rocky shores. Mean TA and DIC increased at night and decreased during the day, with the most extreme conditions measured in the mid-intertidal owing to prolonged emersion periods. Temporal sampling revealed that net ecosystem calcification and production were highest during the day and lowest at night, particularly in the mid-intertidal. Characterization of biogeochemical fluctuations in a world of extremes demonstrates the variable conditions that intertidal biota routinely experience and highlight potential microhabitat-specific vulnerabilities and climate change refugia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据