4.8 Article

Ensemble projections elucidate effects of uncertainty in terrestrial nitrogen limitation on future carbon uptake

期刊

GLOBAL CHANGE BIOLOGY
卷 26, 期 7, 页码 3978-3996

出版社

WILEY
DOI: 10.1111/gcb.15114

关键词

biogeochemical modelling; carbon-climate feedbacks; CO2 fertilization; land surface models; model evaluation; terrestrial ecosystem modelling

资金

  1. European Union [641816]
  2. European Research Council [647204]
  3. European Research Council (ERC) [647204] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

The magnitude of the nitrogen (N) limitation of terrestrial carbon (C) storage over the 21st century is highly uncertain because of the complex interactions between the terrestrial C and N cycles. We use an ensemble approach to quantify and attribute process-level uncertainty in C-cycle projections by analysing a 30-member ensemble representing published alternative representations of key N cycle processes (stoichiometry, biological nitrogen fixation (BNF) and ecosystem N losses) within the framework of one terrestrial biosphere model. Despite large differences in the simulated present-day N cycle, primarily affecting simulated productivity north of 40 degrees N, ensemble members generally conform with global C-cycle benchmarks for present-day conditions. Ensemble projections for two representative concentration pathways (RCP 2.6 and RCP 8.5) show that the increase in land C storage due to CO2 fertilization is reduced by 24 +/- 15% due to N constraints, whereas terrestrial C losses associated with climate change are attenuated by 19 +/- 20%. As a result, N cycling reduces projected land C uptake for the years 2006-2099 by 19% (37% decrease to 3% increase) for RCP 2.6, and by 21% (40% decrease to 9% increase) for RCP 8.5. Most of the ensemble spread results from uncertainty in temperate and boreal forests, and is dominated by uncertainty in BNF (10% decrease to 50% increase for RCP 2.6, 5% decrease to 100% increase for RCP 8.5). However, choices about the flexibility of ecosystem C:N ratios and processes controlling ecosystem N losses regionally also play important roles. The findings of this study demonstrate clearly the need for an ensemble approach to quantify likely future terrestrial C-N cycle trajectories. Present-day C-cycle observations only weakly constrain the future ensemble spread, highlighting the need for better observational constraints on large-scale N cycling, and N cycle process responses to global change.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据